

The 7th International Conference on Informatics and Computing (ICIC) 2022

ICIC 2022 PROGRAM BOOK

8 - 9 DECEMBER 2022

2022 Seventh International Conference on Informatics and Computing (ICIC)

Bali, Indonesia

(Hybrid Conference)

December 8-9, 2022

ISBN: 979-8-3503-4571-1

2022 Seventh International Conference on Informatics and Computing (ICIC)

Jakarta, Indonesia (Hybrid) Phone: +6281384175979 Email: contact@icic-aptikom.org Website: https://icic-aptikom.org December 8-9, 2022

ISBN: 979-8-3503-4571-1

2022 Seventh International Conference on Informatics and Computing (ICIC)

Copyright ©2022 by the Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

Copyright and Reprint Permission

Abstracting is permitted with credit to the source. Libraries are permitted to photocopy beyond the limit of U.S. copyright law, for private use of patrons, those articles in this volume that carry a code at the bottom of the first page, provided that the per-copy fee indicated in the code is paid through the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923.

Other copying, reprint, or reproduction requests should be addressed to IEEE Copyrights Manager, IEEE Service Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-1331.

ISBN: 979-8-3503-4571-1

Additional copies of this publication are available from Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA +1 845 758 0400 +1 845 758 2633 (FAX)

PREFACE

It is my great pleasure to warmly welcome you to the Seventh International Conference on Informatics and Computing (ICIC 2022) held for the first time, in Hybrid mode. Online participation will be held via the Zoom Meeting platform, while offline event will take place in the land on Bali.

The ICIC is a conference series which is conducted annually by APTIKOM, the Indonesian Association of Higher Education in Informatics and Computing. This year the main theme of the conference is "Driving Digital Transformation Toward Society 5.0 through Smart Technology and Artificial Intelligence", with an intention to bring up more awareness in our society on the importance of Artificial Intelligence in the current era and beyond.

The ICIC conference series as a flagship conference of APTIKOM serves as an arena for academicians and their students, experts and practitioners from the industry to meet, present, and have fruitful discussions on their research works, ideas, and papers in the wide areas of Computing which covers Computer Science, Information Systems, Information Technology, Software Engineering, and Computer Engineering. The conference is set to provide opportunities for participants from both academia and industry to share and exchange knowledge as well as the cutting-edge development in the computing field. It is expected that the ICIC participants will be able to take away new thinking and horizon from this conferential meeting to further their works in the area.

There are 237 papers submission and only 130 papers are accepted which is around 54% acceptance rate. The accepted papers will be presented in one of the 9 regular parallel and tracks sessions and will be published in the conference proceedings volume. The diversity of authors come from 9 different countries.

All accepted papers are submitted to IEEE Xplore. IEEE Conference Number: #56845. Catalog Number: CFP22G52-ART ISBN: 979-8-3503-4571-1

On behalf of the ICIC 2022 organizers, we wish to extend our warm welcome and would like to thank for all Keynote Speakers, Reviewers, Authors, and Committees, for their effort, guidance, contribution and valuable support. We would like to also extend our gratitude to IEEE Indonesia Section for technically co-sponsored this event.

I wish you all a most wonderful, enjoyable, and productive conference in this ICIC 2022. Thank you.

Wa billahi taufiq wal hidayah. Wallahul muwaffiq ila aqwamit tharieq.

Wasalaamu 'alaykum warahmatullahi wabarakaatuh.

Yusuf Durachman

Organizing Chair

TABLE OF CONTENT

FRONT MATTER	ii-iv
PREFACE	v
COMMITTEES	vi-vii
TABLE OF CONTENT	viii-xxi
AwThe Museum is so "Dark": The Effect of Thermal Stimuli for Virtual Reality Experience and Emotion Gabriel Indra Widi Tamtama, Halim Budi Santoso, Nila Armelia Windasari, Jyun- Cheng Wang	1-7
Optimized Random Forest Classifier Based on Genetic Algorithm for Heart Failure Prediction Maria Ulfah Siregar, Ichsan Setiawan, Najmunda Zia Akmal, Dewi Wardani, Yessi Yunitasari, Ardhi Wijayanto	8-13
The Estimating of Nutrient Value in Apples Based on Size Employing the Canny Edge Detection Algorithm Anis Fitri Nur Masruriyah, Muhammad Haidar Ijlal, Rahmat Rahmat, Hanny Hikmayanti Handayani, Deden Wahiddin, Ahmad Fauzi	14-19
Influence of Electronic Word Of Mouth (e-WOM), Hedonic Motivation, and Price Value On Consumer's Purchase Intention Using Social Commerce "TikTok Shop" <i>Mutia Maulida, Yuslena Sari, Siti Rohmah</i>	20-26
The Influence of The COVID-19 Pandemics in Indonesia On Predicting Economic Sectors Syafrial Fachri Pane, Heriyanto, Aji Gautama Putrada, Nur Alamsyah, Mohamad Nurkamal Fauzan	27-32
A PSO-GBR Solution for Association Rule Optimization on Supermarket Sales Syafrial Fachri Pane, Aji Gautama Putrada, Nur Alamsyah, Mohamad Nurkamal Fauzan	33-38
SI-BIME Smart Learning Multimedia Platform for Students: a Solution for the Pandemic-19 in the Regions <i>Dina Fitria Murad, Titan, Taufik Darwis, Hardyansyah</i>	39-43

8	Garbage Classification Using CNN Architecture ShuffleNet v2 Eka Setya Wijaya, Andy Mizwar, Achmad Mujaddid Islami, Yuslena Sari, Erika Maulidiya, Irham Maulani Abdul Gani	44-47
9	Bankruptcy Prediction using Ensemble Support Vector Machine Nurul Fathanah Mustamin, Jeffry, Supriyadi La Wungo, Firman Aziz, Nurafni Shahnyb, Ampauleng	48-51
10	Text Normalization on Code-Mixed Twitter Text using Language Detection <i>Rafi Dwi Rizqullah, Indra Budi</i>	52-55
11	Mobile Application Performance Improvement with the Implementation of Code Refactor Based on Code Smells Identification: Dutataniku Agriculture Mobile App Case Study Argo Wibowo, Antonius Rachmat Chrismanto, Maria Nila Anggia Rini, Lukas Chrisantyo	56-62
12	Public Sentiment Analysis of Indonesian Tweets About COVID-19 Vaccination Using Different Machine Learning Approaches Valentinus Paramarta, Adele Mailangkay, Hilda Amalia, Desta Chrismas	63-67
13	Modeling and Simulation of Long Range (LoRa) Communication System on Smart Grid Isminarti, Syafaruddin, Amil Ahmad Ilham, Ardiaty Arief	68-73
14	Validation and Verification of Business Architecture Process Based On The V . Model <i>Widia Febriyani, Firna Muninggar Kistianti, Muharman Lubis</i>	74-79
15	Fire Detection In Wetland Using YOLOv4 And Deep Learning Architecture Andreyan Rizky Baskara, Yuslena Sari, Auria Andeni Anugerah, Eka Setya Wijaya, Ricardus Anggi Pramunendar	80-85
16	Design and Build a Attendance System and Employee Performance Assessment with a Website-Based Profile Matching Method Hata Maulana, Noorlela Marcheta, Asep Taufik Muharram, Kamil Raihan Permana,	86-90
	Alifah Putri Aisyah Comparison of the K-Nearest Neighbor and Decision Tree algorithm to the Sentiment Analysis of Investment Applications Users in Indonesia	04.00
17	Doni Purnama Alamsyah, Rizkiansyah, Asti Herliana, Tjia Fie Tjoe	91-96

ix

18	Investigation of Netizen Sentiment Analysis Toward The Controversy of Information and Electronic Transaction Law <i>Fahdi Saidi Lubis, Muharman Lubis, Lukmanul Hakim</i>	97-103
19	A Systematic Literature Review Enhanced Felder Silverman Learning Style Models (FSLSM) <i>Supangat, Mohd Zainuri Bin Saringat</i>	104-110
20	Prediction of Automobiles Prices Using Exploratory Data Analysis Based on Improved Machine Learning Techniques Fadhil Muhammad Basysyar, Ferisanti, Maryam Wulandari, Indah Sucitra, Dian Ade Kurnia, Solikin Solikin	111-116
21	A Systematic Literature Review of Barriers and Drivers E- Government in Developing Countries: TOE Framework Perspective Dony Martinus Sihotang, Bambang Aria Yudhistira, Solikin Solikin, Widijanto Satyo Nugroho, Wahyu Catur Wibowo, Dana I. Sensuse, Achmad Nizar Hidayanto	117-122
22	User Experience Analysis Using Usability Testing on Library and Knowledge Center BINUS University with SmartPLS Dyaz Aerlangga, Rifky Muhammad Arsy, Gunawan Sunardy, Teguh Prasandy	123-127
23	Acceptance Rate Analysis of Internal Management Operational Application on Pt. Sigma Cipta Caraka Using Technology Acceptance Model (TAM) Fatimah Azzahra Ashari, Muhammad Qamra Zahran Muharam, Junia Himmayati, Teguh Prasandy	128-131
24	Examining User Acceptance of MOOCs: The Role of Openness, Task Technology Fit, and Self-Efficacy Bernardinus Harnadi, Albertus Dwiyoga Widiantoro, FX. Hendra Prasetya	132-137
25	Follicle Detection Model on Ovarian Ultrasound Image Sri Hartati, Aina Musdholifah, Putu Desiana Wulaning Ayu	138-145
26	Sentiment Analysis of "Hepatitis of Unknown Origin" on Social Media using Machine Learning Nova Agustina, Harya Gusdevi, Diyah Wijayati, Iis Ismawati, Candra Nur Ihsan	146-151
27	Online Learning and Students' Ethical Behavior During Covid-19: For Better or for Worse? Febri Tri Intan Azhana, Rosita Widjojo, Doni Purnama Alamsyah, Khusnul Khotimah, Muchamad Rizky Zakaria	152-156

28	ISO 15489 Attributes Prioritization in Electronic Document Management System of the First Level Healthcare Facilities Intan Dzikria, Luvia Friska Narulita, Agus Hermanto, Geri Kusnanto	157-162
29	Vanishing Point Detection using Angle-based Hough Transform and RANSAC Dea Angelia Kamil, Wahyono, Agus Harjoko	163-167
30	Classification and Sentiment Analysis on Tweets of the Ministry of Health Republic of Indonesia Apriandy Angdresey, Indah Yessi Kairupan, Kenshin Geraldy Emor	168-173
31	An Electricity Consumption Monitoring and Prediction System Based on The Internet of Things <i>Apriandy Angdresey, Lanny Sitanayah, Zefanya Marieke Philia Rumpesak</i>	174-179
32	Conditional Random Field for Crime News Information Extraction with Enhancement of SMOTE <i>Viny Christanti M., Veronika, Dali S. Naga</i>	180-185
33	The Implementation of Real-ESRGAN as An Anticipation to Reduce CER Value in Plate Number Extraction Results Employing EasyOCR Geo Septian, Deden Wahiddin, Hilda Yulia Novita, Hanny Hikmayanti Handayani, Ayu Ratna Juwita, Anis Fitri Nur Masruriyah	186-190
34	Learner Action Patterns in the Problem-Solving Process Related to Program Code Composition Based on Tracking System Activities <i>Aulia Akhrian Syahidi, Ahmad Afif Supianto, Tsukasa Hirashima, Yutaka Watanobe</i>	191-197
35	Mobile Device Positioning by Using Dynamic Weighted Centroid Model Rifki Kosasih, Ahmad Sabri	198-201
36	Multiclass Intent Classification for Chatbot Based on Machine Learning Algorithm W. M. Amir Fazamin W. Hamzah, Mohd Kamir Yusof, Ismahafezi Ismail, Mokhairi Makhtar, Hasnah Nawang, Azwa Abdul Aziz	202-207
37	IoT-Agri: IoT-based Environment Control and Monitoring System for Agriculture Adimas Ketut Nalendra, Dona Wahyudi, M. Mujiono, M. Nur Fuad, Ni'ma Kholila	208-213

38	Analysis of Design Implementation Guidelines for Data Governance Management Based on DAMA-DMBOKv2 Fadhil Rozi Hendrawan, Tien Fabrianti Kusumasari, Rokhman Fauzi	214-219
39	Implementation of Modified Linear Congruent Methods in Randomizing Exam Questions to Optimize the Learning Environment <i>Maxrizal, Sujono, Baiq Desy Aniska Prayanti, Syafrul Irawadi</i>	220-223
40	Enterprise Architecture Planning based on One Data in Indonesian Higher Education Hery Dian Septama, Muhamad Komarudin, Puput Budi Wintoro, Mahendra Pratama, Titin Yulianti, Bambang Sundari	224-229
41	Spelling Correction Using the Levenshtein Distance and Nazief and Adriani Algorithm for Keyword Search Process Indonesian Qur'an Translation <i>Muhammad Iskandar Yahya, Arini, Victor Amrizal, lik Muhamad Malik Matin, Dewi</i> <i>Khairani</i>	230-235
42	A Study on Text Feature Selection Using Ant Colony and Grey Wolf Optimization Joan Angelina Widians, Retantyo Wardoyo, Sri Hartati	236-242
43	Improvising Low Contrast Malaria Images Using Contrast Enhancement Techniques on Various Color Models Doni Setyawan, Retantyo Wardoyo, Moh Edi Wibowo, E. Elsa Herdiana Murhandarwati	243-248
44	Comparison of Smoothing Methods to Remove Artifacts in Emotion Recognition based on Electroencephalogram Signals I Made Agus Wirawan, Retantyo Wardoyo, Danang Lelono, Sri Kusrohmaniah	249-256
45	New Approach of Covid-19 Prevention by Implemented Combination of Decision Support System Algorithm Eddy Soeryanto Soegoto, Yeffry Handoko Putra, Rahma Wahdiniwaty, Zuriani Ahmad Zukarnain, Noorihan Abdul Rahman	257-263
46	An experimental study on binary optimization using quantum annealing in D-Wave Nongmeikapam Brajabidhu Singh, Gopal Krishna, Arnab Roy, Joseph L Pachuau, Anish Kumar Saha	264-268

Oil Well Monitoring System Based on IoT Technology and Machine Learning

47 Evizal Abdul Kadir, Muslim Abdurrahman, Sharul Kamal Abdul Rahim, Agus Arsad, 269-274 Sri Listia Rosa, Apri Siswanto

Gamification using Octalysis Framework in Knowledge Management System for Vocational High Schools during the Covid-19 Pandemic

48 Mgs. Afriyan Firdaus, Dwi Rosa Indah, Yoppy Sazaki, Eka Prasetyo Ariefin, 275-282 Muhammad Fachri Nuriza, Muhammad Rafly

Classification of Chili Plant Condition based on Color and Texture Features

49 Deffa Rahadiyan, Sri Hartati, Wahyono, Andri Prima Nugroho

51

283-289

Face Recognition System Using Feature Extraction Method of 2-D Gabor Wavelet Filter Bank and Distance-Based Similarity Measures

Design of Blind Community Assistance Devices with Indoor Positioning System Technology Bong Cen Choi, David Habsara Hareva, Samuel Lukas 294-299

The Follower-Influencer Experience Affecting the Intention to Follow Recommendation: PAD Perspective

52 Dedi I. Inan, Achmad Nizar Hidayanto, Ratna Juita, Adam Maulana, Dinda Mutiara 300-305 Qur'ani Putri, Muhammad Fariz Farhan, Siti Kaamiliaa Hasnaa, Marlinda Sanglise

Adaptive Cooling System for Comfortable Learning 53 David Habsara Hareva, Andre Andre, Benny Hardjono, Calandra Alencia Haryani, 306-310 Irene Astuti Lazarusli

Motivation and Drivers for Online Fashion Rental: Study by Social Networking Sites in Indonesia

54 Margareth Setiawan, Sandy Setiawan, Aris Darisman, Rosyidah Rahmah 311-316

UT Metaverse: Beyond Universitas Terbuka Governance Transformation and Open Challenges

55 Antares Firman, Ali Muktiyanto, Dedi I. Inan, Ratna Juita, Ghassan Beydoun, 317-322 Daryono

Analysis of Face Data Augmentation in Various Poses for Face Recognition Model

⁵⁰ R. Rizal Isnanto, Ajub Ajulian Zahra, Andre Lukito Kurniawan, Ike Pertiwi Windasari 290-293

56	T. M. Syahril Nur Alamsyah, Taufik Fuadi Abidin, Ridha Ferdhiana, M. Dirhamsyah, Muhammad Chaidir	323-328
57	Utilization of Linguistic Data for Learner Assessment on e- Learning: Instrument and Processing Wenty Dwi Yuniarti, Sri Hartati, Sigit Priyanta, Herman Dwi Surjono	329-333
58	Grading Problem-Solving for Clustering Students' Score Using Dynamic Programming Procedure in The Context of Dynamic Time Warping Mochamad Nizar Palefi Ma'ady, Tabina Shafa Nabila Syahda, Muhammad Nasrullah, Anindya Salwa Salsabila, Ully Asfari, Hawwin Mardhiana	334-338
59	The 7-Phases Preprocessing Based On Extractive Text Summarization Adhika Pramita Widyassari, Edy Noersasongko, Abdul Syukur, Affandy	339-344
60	Dual Cluster Head Selection Based on LEACH and Differential Search Algorithm to Extend Network Lifetime in Wireless Sensor Network <i>Kun Nursyaiful Priyo Pamungkas, Supeno Djanali, Radityo Anggoro, Paliling,</i> <i>Puhrani Burhan, Feriyadi</i>	345-351
61	The Evaluation on Acceptance of the Use of Social Media in the Implementation of Blended Learning in Private Higher Education in Indonesia <i>Fahmi Yusuf, A'ang Subiyakto, Titik Khawa</i>	352-358
62	Blockchain-Based Multiple Server Database System Prototype on BMKG Automatic Weather Station (AWS) Center Architecture Handi Sutriyan, Agung Sunaryadi, Marzuki Sinambela	359-364
63	Low Cloud Type Classification System Using Convolutional Neural Network Algorithm <i>Muhammad Naufal Fikriansyah, Hapsoro Agung Nugroho, Marzuki Sinambela</i>	365-370
64	Dynamic Pricing Analytic of Airbnb Amsterdam Using K-Means Clustering <i>Fitrianingsih, Dewi Agushinta Rahayu, Figa Rizfa Zazila</i>	371-377
65	Systematic Literature Review of Text Feature Extraction Agus Mulyanto, Sri Hartati, Retantyo Wardoyo	378-383

 Relevance, Customer Engagement, and Repurchase Decision Arif Murti Rozamuri, Johan Setiawan, Christian Haposan Pangaribuan, Hidayanti, Tri 384-3 Wismiarsi, Maria Wahyuni 	389
 Model Implementation of Application Programming Interface for E-Government Data Integration 67 Agus Sifaunajah, Tholib Hariono, Moh. Anshori Aris Widya, Primaadi Airlangga, 390-3 Sujono, Siti Sufaidah 	395
A Time-Window Approach to Recommending Emerging and On- the-rise Items 68 <i>Tubagus Mohammad Akhriza, Indah Dwi Mumpuni</i> 396-4	403
Topic Modeling on Covid-19 Vaccination in Indonesia Using LDA Model69Nurul Mutiah, Dian Prawira, Ibnur Rusi404-4	409
Prediction of Work From Home Post COVID-19 using Classification Model 70 <i>Risanti Galuh, Johan Setiawan</i> 410-4	415
 Automatic Determination of Seeded Region Growing Parameters in Watershed Regions to Segmentation of Tuna 71 Wanvy Arifha Saputra, Agus Zainal Arifin, Nuruddin Wiranda, Edi Yohanes, Zainal 416- Abidin, Bambang Suriansyah 	423
 GeoJSON Implementation for Demographic and Geographic Data Integration Using RESTful Web Services <i>Alam Rahmatulloh, Bambang Tri Handoko, Rahmi Nur Shofa, Irfan Darmawan</i> 424-4 	429
 Android-based Matrix Learning Media to Increase Student Interest in Learning 73 Isna Wardiah, Rahimi Fitri, Reza Fauzan, Seberan, Fuad Sholihin 430-4 	435
 M-Government Adoption in Indonesia: Self-Determination Theory Dedi I. Inan, Achmad Nizar Hidayanto, Ratna Juita, Antares Firman, Ali Muktiyanto, 436-4 Hermawan Wibisana Arifin, Muhammad Rizky Darmawan, Nabilla Yuli Shafira, Cassie Michelle 	441
Games for Scrum Team Collaboration in the Global Software Development Environment: A Literature Review75Anita Hidayati, Iklima Ermis Ismail, Ade Rahma Yuly, Henry Edison442-4	446

76	Digital Transformation Impact Analysis towards Transition in the Role of Information Technology for Organization in New Digital Bank Yosua Pangihutan Sagala, Muhammad Akmal Juniawan, Vina Ardelia Effendy, Rahmawati Putrianasari, Vien Aulia Rahmatika, Muhammad Rifki Shihab, Benny Ranti	447-452
77	Analysis of Critical Success Factors in Information Technology Projects: A National Shipping Company Case Study Ivan Eka Aditya, Ardhy Wisdarianto, Teguh Raharjo	453-459
78	Rice seed classification using machine learning and deep learning Budi Dwi Satoto, Devie Rosa Anamisa, Muhammad Yusuf, M Kautsar Sophan, Siti Oryza Khairunnisa, Budi Irmawati	460-466
79	1D Convolutional Neural Network to Detect Ventricular Fibrillation Sava Savero, David Agustriawan, Muammar Sadrawi	467-471
80	Analysis for Data Mobility and Covid-19 Positive Rate with Multilayer Perceptron Arie Vatresia, Ruvita Faurina, Rizki Zulfahmi	472-477
81	Multibranch Convolutional Neural Network For Gender And Age Identification Using Multiclass Classification And FaceNet Model Haris Setiawan, Mudrik Alaydrus, Abdi Wahab	478-483
82	Detecting Online Outlier for Data Streams using Recursive Residual Yasi Dani, Agus Yodi Gunawan, Sapto Wahyu Indratno	484-490
83	Implementation of Adaptive Bit Decision Point to Improve Receiver Performance in Li-Fi System Juan Salao Biantong, Mudrik Alaydrus, Ahmad Sony Alfathany	491-496
84	Adoption Technology at MSMEs: A Conceptual Model with TOE Evi Triandini, I Gusti Ngurah Satria Wijaya, I Ketut Putu Suniantara, Sugiarto, Djoko Budiyanto Setyohadi	497-501
85	Chunk Learning Media for Cognitive Load Optimization on Science Learning Ng Melissa Angga, Cicilia Caroline Phieranto, Fonny Tejo, Dionisius Yovan, Angelica Angelica, Felicia Sumarsono Putri	502-507
	Tania Madaling for Other Threat Intelligence (CTI)	

Topic Modeling for Cyber Threat Intelligence (CTI)

86	Hatma Suryotrisongko, Hari Ginardi, Henning Titi Ciptaningtyas, Saeed Dehqan, Yasuo Musashi	508-514
87	LongSpam: Spam Email Detection Using LSTM Algorithm Nurhadi Wijaya, Yudianingsih, Evrita Lusiana, Sugeng Winardi, Zaidir, Agus Qomaruddin Munir	515-520
88	Improving Candle Direction Classification in Forex Market using Support Vector Machine with Hyperparameters Tuning Raymond Sunardi Oetama, Yaya Heryadi, Lukas Lukas, Wayan Suparta	521-526
89	Energy Efficiency in Buildings Using Multivariate Extreme Gradient Boosting Triando Hamonangan Saragih, Rahmat Ramadhani, Muhammad Itqan Mazdadi, Muhammad Haekal	527-531
90	LSTM and ARIMA for Forecasting COVID-19 Positive and Mortality Cases in DKI Jakarta and West Java <i>Syafrial Fachri Pane, Adiwijaya, Mahmud Dwi Sulistiyo, Alfian Akbar Gozali</i>	532-537
91	Sentiment Analysis on Cryptocurrency Based on Tweets and Retweets Using Support Vector Machines and Chi-Square <i>Isabella Donita Hasan, Raymond Sunardi Oetama, Aldo Lionel Saonard</i>	538-543
92	Augmented Reality English Education Based iOS with MobileNetV2 Image Recognition Model Doni Purnama Alamsyah, Yudi Ramdhani, Agus Tiyansyah Syam, Ahmad Setiadi	544-548
93	Sentiment Classification of Visitors in Yogyakarta Palace using Support Vector Machine <i>Cahya Damarjati, Fadia Rani, Slamet Riyadi, Gan Kok Beng</i>	549-553
94	The Comparison of Sentiment Analysis Algorithm for Fake Review Detection of The Leading Online Stores in Indonesia <i>Pius Hans Christian, Ririn Ikana Desanti</i>	554-557
95	Hate Speech Detection in Code-Mixed Indonesian Social Media: Exploiting Multilingual Languages Resources Endang Wahyu Pamungkas, Azizah Fatmawati, Yusuf Sulistyo Nugroho, Dedi Gunawan, Endah Sudarmilah	558-562
96	Semantic Segmentation of Landsat Satellite Imagery Herlawati Herlawati, Rahmadya Trias Handayanto, Prima Dina Atika, Sugiyatno Sugiyatno, Rasim Rasim, Mugiarso Mugiarso, Andy Achmad Hendharsetiawan, Jaja Jaja, Santi Purwanti	563-568

97	DeepRec: Efficient Product Recommendation Model for E- Commerce using CNN Hamzah, Erizal, Mohammad Digi	569-574
98	Comparison of Convolutional Neural Network Models to Detect Covid-19 on CT-Scan Images <i>Slamet Riyadi, Suci Rahmadina M. Rasyid, Cahya Damarjati</i>	575-579
99	Data Pipeline Framework for AIS Data Processing Ni Kadek Bumi Krismentari,I Made Oka Widyantara,Ngurah Indra ER,I Made Dwi Putra Asana,I Putu Noven Hartawan,I Gede Sudiantara	580-585
100	User Experience Evaluation of IT Support Mobile Application Using System Usability Scale (SUS) and Retrospective Think Aloud (RTA) <i>Imanuel Revelino Murmanto, Sunardi, Ratih Muthiah Kamilia, Ganis Maulia Yusuf,</i> <i>Rizki Kurniawan</i>	586-593
101	Development of Portal Signer for Digital Products by Using Iterative Model at PT RST Manogunawan Resqi Gultom, Riyanthi Angrainy Sianturi, Rince Septriana Parhusip, Ova Ferdinan Marbun, Yohanssen Pratama	594-602
102	Portable Monitoring Systems for Rivers Waste Based on Internet of Things Henderi Henderi, Mumammad Hudzaifah Nasrullah, Laura Belani Nudiyah, Po Abas Sunarya, Sofa Sofiana, Didik Setiyadi	603-607
103	Monitoring Indoor Air Quality for Thermal Comfort using Internet of Things <i>Rahmi Andarini, Moeljono Widjaja</i>	608-613
104	Adopting Haar Cascade Algorithm on Mask Detection System Based on Distance Jemakmun, Rudi Suhirja, Darius Antoni, Hadi Syaputra	614-618
105	Impact of Leadership in Transitioning IT Roles from Turnaround to Strategic: Case Study of PT. XYZ <i>Paulus Donny Junianto</i>	619-624
106	Usability Evaluation on Educational Chatbot using the System Usability Scale (SUS) Arief Hidayat, Agung Nugroho, Safa'ah Nurfa'izin	625-629

107	Real Time Web-based Facemask Detection Geraldo Pan, Suryasari, Haditya Setiawan, Aminuddin Rizal	630-634
108	Interaction Design of Indonesian Anti Hoax Chatbot using User Centered Design Ryan Daniel, Ayu Purwarianti, Dessi Puji Lestari	635-640
109	Mobile Augmented Reality for Japanese Vocabulary and Hiragana Letters Learning with Mnemonic Method <i>Riri Safitri, Resnia Trya Muslima, Sandra Herlina</i>	641-647
110	Analysis of Discussion Tendency on Twitter using Text Classification Reyvan Rizky Irsandi, Ayu Purwarianti	648-654
111	Usability Improvement Through User Interface Design With Human Centered Design (HCD) Method On Junior High School Websites Saepul Aripiyanto, Muhamad Azhari, Riana Munawarohman, Siti Ummi Masruroh, Dewi Khairani, Husni Teja Sukmana	655-661
112	Educational Question Classification with Pre-trained Language Models Said Al Faraby, Adiwijaya, Ade Romadhony	662-667
113	Evaluation of Enterprise Resource Planning (ERP) and Open- source ERP Modification for Performance Improvement <i>Ananda, Jansen Wiratama</i>	668-676
114	Adaptivo: A Personalized Adaptive E-Learning System based on Learning Styles and Prior Knowledge M.A.M Rishard, S.L Jayasekara, E.M.P.U Ekanayake, K.M.J.S Wickramathilake, Shyam Reyal, Kalpani Manathunga, Jagath Wickramarathne	677-685
115	Data Balance Optimization of Fraud Classification for E-Commerce Transaction <i>Aida Fitriyani, Wowon Priatna, Tyastuti Sri Lestari, Dwipa Handayani, TB Ai</i> <i>Munandar, Amri</i>	686-689
116	YoBagi's User Experience Evaluation using User Experience Questionnaire Fransiskus Panca Juniawan, Dwi Yuny Sylfania, Rendy Rian Chrisna Putra, Henderi Henderi	690-693
	A Floor Cleaning Based-Robotic Combines A Microcontroller And A Smartphone	

117	Jafar Shadiq, Rita Wahyuni Arifin, Bayu Aji Prayoga, Sumardiono S., Ari Nurul Alfian, Solikin Solikin	694-698
118	Implementation of Internship Decision Support System Using Simple Multi Attribute Rating Technique (SMART) <i>Pajri Aprilio, SY Yuliani</i>	699-705
119	Implementation of One Data-based Lecturer Profile Information System for Key Performance Indicator Monitoring Hery Dian Septama, Muhamad Komarudin, Puput Budi Wintoro, Mahendra Pratama, Titin Yulianti, Wahyu Eko Sulistiono	706-712
120	Travel Budget Prediction for Determining Tourism Objects Using Simple Additive Weighting (SAW) Algorithm H Hartatik, Nurul Firdaus, Rudi Hartono, Berliana Kusuma Riasti, Agus Purbayu, Fiddin Yusfida A'la	713-718
121	Optimization Analysis of Neural Network Algorithms Using Bagging Techniques on Classification of Date Fruit Types <i>Rully Pramudita, Solikin Solikin, Nadya Safitri</i>	719-723
122	Machine Learning Model Based on REST API for Predicting Tenders Winner Mardi Yudhi Putra, Rachmad Nur Hayat, Ahmad Chusyairi, Dwi Ismiyana Putri, Solikin Solikin	724-728
123	IoT-Based Smart Bin Using Smell, Weight, And Height Sensors Abraham Bulyan Zebua, Muhammad Fahrul Azmi Husni, Muhammad Naufal, Andri Andri, Syanti Irviantina	729-733
124	The role of management technology and innovation strategy in business strategy based on a user perspective <i>Nina Kurnia Hikmawati, Yusuf Durachman, Husni Teja Sukmana, Herlino Nanang</i>	734-738
125	Implementation of Discrete Cosine Transform and Permutation- Substitution Scheme Based on Henon Chaotic Map for Images Irpan Adiputra Pardosi	739-743
126	E-Archive Document Clustering Information System Using K- Means Algorithm Aida Fitriyani, Dwipa Handayani, Achmad Noeman, Asep Ramdhani Mahbub, Ratna Salkiawati, Ahmad Fathurrozi	744-748
	Usability Testing Analysis of Company Website System In Indonesia	

127	Rangga Firdaus, Nina Kurnia Hikmawati, Yusuf Durachman, Herlino Nanang, Dewi Khairani, Muhammad Syauqi Hazimi	749-754
128	Towards Tourism Management Platform for Culinary Tourism Management and Merchandise E-Catalogs Nurul Firdaus, Salsabila Fithriyah, Hartatik, Agus Purbayu, Fiddin Yusfida A'la, Berliana Kusuma Riasti	755-760
129	The Influence of Blended Learning with Flipped Classroom Model on Motivation in Learning Geography <i>Nur Azizah, Jakiatin Nisa, Syairul Bahar, Andri Noor Ardiansyah, Abd. Rozak</i>	761-764
130	Design and Implementation of Free Ambulance Service System in Bandar Lampung City Based on Android Mobile Application <i>Gigih Forda Nama, Candra Kurnia Nugraha, Hery Dian Septama</i>	765-771
	AUTHOR INDEX	772-783

Follicle Detection Model on Ovarian Ultrasound Image

Sri Hartati Department of Computer Science and Electronics Universitas Gadjah Mada Yogyakarta, Indonesia shartati@ugm.ac.id Aina Musdholifah Department of Computer Science and Electronics Universitas Gadjah Mada Yogyakarta, Indonesia aina_m@ugm.ac.id

Jaswadi Dasuki Faculty of Medicine, Public Health and Nursing Universitas Gadjah Mada Yogyakarta, Indonesia djaswadi@ugm.ac.id Putu Desiana Wulaning Ayu Department of Information Technology, Faculty Computer and Informatics Institut Teknologi dan Bisnis STIKOM Bali Bali, Indonesia wulaning_ayu@stikom-bali.ac.id

Abstract- every woman has two ovaries. Ovaries have several follicles, which consist of oocytes or eggs which are filled with granulosa cells. Some women can have a difference in the number of follicles in each ovary. There are cases of several follicles that are coincided, making it difficult to calculate the number of follicles. In this study, the separation of adjoining follicles and automatic follicle counting was carried out from the results of ovarian ultrasound image segmentation. The segmentation results obtained feature information in the form of follicular feature extraction as many as eight features. The techniques used in this work for feature selection was carried out using Principal Components Analysis (PCA) to reduce the feature. In this study, the PCA and Support Vector Machine (SVM) classifier produced higher accuracy than the classification without PCA. The experimental results also show that the proposed method produced higher classification accuracy than previous work, which yielded 90.39% accuracy, 90.27 % sensitivity, and 90.43 % specificity.

Keywords— Follicle, Principal Components Analysis, Support Vector Machine.

I. INTRODUCTION

Follicular monitoring is essential for diagnosing, treating, and preventing infertility [1]. Infertility in women of reproductive age can be experienced by patients diagnosed with Polycystic Ovary Syndrome (PCOS). PCOS is a reproductive and metabolic disorder. PCOS can affect 6% -20% of women of childbearing age worldwide, with a prevalence reaching or even exceed 10-15% [2]-[7]. PCOS patients have many follicles and a small follicle size [8], [9]. European Society for Human Reproduction and Embryology (ESHRE) and the American Society for Reproductive Medicine (ASRM) described polycystic ovary as having 12 or more follicles 2-9 mm in size, and ovarian volume are greater than 10 cm³. The polycystic ovary can be seen from the results of an ultrasound image. Normal ovarian morphology when less than 12 follicles <10 mm of diameter or dominant follicle (> 10mm) were counted in follicular number per section [3], [4], [10]. Sample images of normal ovarian morphology [4] and polycystic ovarian morphology [3], as shown in Fig. 1. There are two ways of ultrasound examination, namely transabdominal and transvaginal ultrasound. Polycystic ovary is seen more clearly using transvaginal ultrasound examination [11]–[14]. Transvaginal ultrasound examination was performed by gynecologists in the early follicular phase of menstruation and independently of the cycle phase in amenorrhea patients [15].

Transvaginal ultrasound is often used to examine ovarian conditions because it is safe, and the results of the images can be printed immediately. It also used to provide consultation to patients to monitor the growth of ovarian follicles [16]. Follicle monitoring based on ultrasonographic images takes time to count small follicles [16]. Computer-aided diagnostic techniques have been used for ovarian monitoring, follicle segmentation to better understand the condition of the ovarian follicles. There are still few studies on applying computeraided diagnostic techniques to detect follicles from ultrasound images of ovaries automatically. Research for follicle detection on ovarian ultrasound images using thresholding [17], active contour [18], watershed [19], region growing [20]-[21], horizontal window filtering and filled Convex hull technique [22], automatic follicle segmentation using the k-means clustering method was successful [23]. However, the resulting follicle segmentation was still unable to separate adjoining follicles, which affected the count of follicles. The contribution of this research are some cases follicles are coincided, this will make it difficult to calculate the number of follicles. This study carried out the separation of adjoining follicles and automatic follicle counting from the results of ovarian ultrasound image segmentation using Active Contour Without Edge and Watershed modification. The results of segmentation get a variety of feature extraction values, then the most relevant feature will be selected using feature selection.

Computer-aided diagnostic techniques have been used for ovarian monitoring, follicle segmentation to better understand the condition of the ovarian follicles. There are still few studies on applying computer-aided diagnostic techniques to detect follicles from ultrasound images of ovaries automatically. Research for follicle detection on ovarian ultrasound images using thresholding [17], active contour [18], watershed [19], region growing [20]-[21], horizontal window filtering and filled Convex hull technique [22], automatic follicle segmentation using the k-means clustering method was successful [23]. However, the resulting follicle segmentation was still unable to separate adjoining follicles, which affected the count of follicles. The novelty of this research are some cases follicles are coincided, this will make it difficult to calculate the number of follicles. This study carried out the separation of adjoining follicles and automatic follicle counting from the results of ovarian ultrasound image segmentation using Active Contour Without Edge and Watershed modification. The results of segmentation get a variety of feature extraction values, then the most relevant feature will be selected using feature selection.

normal ovarian

olycystic ovarian

Fig. 1. Sample images of ovarian morphology [3] [4]

II. RELATED WORK

Several approaches have proposed to segmentation the follicle from an ultrasound image of the ovary. Some researchers in follicle testing used preprocessing, segmentation, feature extraction and classification stages. The preprocessing stage is done with median filtering, adaptive median filtering, gaussian filtering and contourlet transform.

Optimal thresholding segmentation using for automated detection of the follicle in the ultrasound image, Sobel operator and morphological gap and shutting is used for preprocessing. Feature extraction is predicated on seven geometric parameters of the follicles [17]. The segmentation method is implemented using active contour without edge and watershed for automated detection of the follicle in the ultrasound image of the ovary. Feature extractions used are area, perimeter, centroid, roundness [18].

In [19], they use edge-based segmentation and morphological operations to detect 50 sample images. The preprocessing stage for noise reduction is implemented using a Gaussian low pass filter or contourlet transform for despeckling the ultrasound images of ovaries. Geometric features used are major axis length, minor axis length, the ratio of major axis length to minor axis length.

Region growing segmentation resulted in follicle recognition of about 78% but difficulty detecting smaller follicles due to their brightness in the dataset [20]. Research [21] with the region growing method resulted in follicle recognition higher than [19], but this method is limited to ultrasound images with homogeneity [21]. Ardhendu Mandal, Manas Sarkar, and Debosmita Saha [22] used morphological opening followed by morphological closing operations for speckle noise ultrasound image of the ovary. Horizontal Window Filter (HWF), filled convex hull technique and active contours for follicle segmentation from ovarian USG image, the success rate of follicle detection is 81.03% in classification and 87.23% in precision [22]. Follicle segmentation from ovarian ultrasound image using active contour yields high accuracy for large and small follicles, but the segmentation is not automatic [18]. Segmentation using the k-means clustering method [23] succeeded in recognizing follicles automatically, but follicles that were attached follicles were still not recognized properly.

In [25], they are used a cost map depending on the pixel's relative location and region growing method for follicle identification with recognition rate for all the images processed is 84.04% and misidentification rate is 5.9%. In [26], they applied a morphological operation with an edge-based method using a canny operator for follicle identification and an average recognition rate of 87.5%. In this paper used active contour without edge and watershed modification for segmented the follicles, especially separation of adjoining follicles and automatic follicle counting.

III. PROPOSED METHOD

The framework of the proposed method for automatic follicle detection is shown in Fig. 2. This article primarily divides the segmentation algorithm into six steps: image acquisition, preprocessing, segmentation, feature extraction, feature selection, and classification.

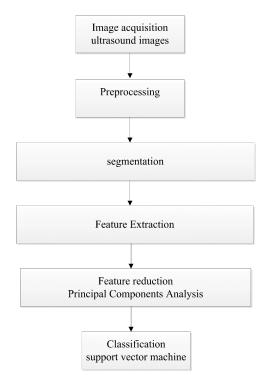


Fig. 2. The proposed method for automatic follicle detection

A. Image acquisition and preprocessing

Image acquisition is the process of taking follicle image from ultrasound images of the ovaries. In this study, we use the data from the Sakina Idaman General Hospital Yogyakarta. For this research used 90 image ulatrasound. The initial step for the preprocessing is determine the region of interest, change the original image to the grayscale image, histogram equalization, and speckle noise reduction the ultrasound images of the ovaries used adaptive median filtering.

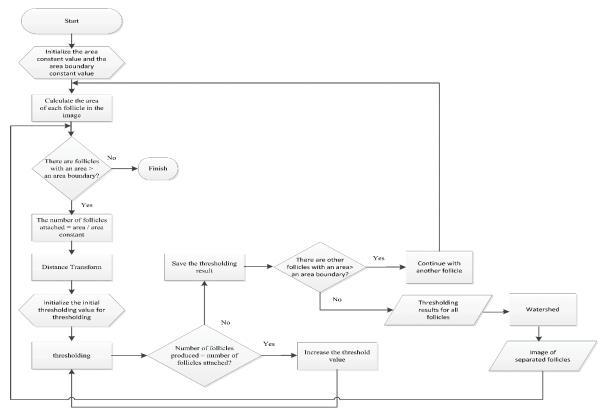


Fig. 3. Automatic detection of coincided follicles

B. Segmentation Process

The segmentation process produces sub-images that contain the only follicle. The segmentation is done using binarization, morphological operations, hole filling operations, active contour without edge and watershed modification for automatic follicle detection is shown in Fig. 3.

C. Equations Feature Extraction

Segmentation produces an image object that will be used for the feature extraction stage. The object in this study is the follicles. This research will use feature extraction in the form of geometric shape features. Geometric shape features such as area, perimeter, major axis, minor axis, eccentricity, extent, circularity, and tortuosity are measured to identify the correct follicle.

X_{l}	:	Area
X_2	:	Perimeter
X_3	:	Major Axis
X_4	:	Minor Axis
X_5	:	Eccentricity
X_6	:	Extent
X_7	:	Circularity
X_8	:	Tortuosity

The bounding box area is a basic descriptive property. It is easy to calculate the area from the curve boundary representations and the chain code [27]. The perimeter is the length of the object's edge or outline [28]. The object area is known as the white area expressed by the number of pixels of the selected object area [28], [29]. An area with all interior corners less than 180° is the area convex used to determine the type of object [30]. The ratio of the area to the area of the bounding box will give the extents [28]. Formula for extent show in equation (1).

$$Extent = \frac{object\ area}{boundingbox\ area} \tag{1}$$

Area and convex area have a relationship to characterize the form solidity of the object [30]. The relationship between area and perimeter can produce circularity, which is the roundness of the object [30]. Eccentricity is the distance between the centre of an ellipse and the length of its major axis. The range of the value is between 0 and 1[27]. The ellipse has 2 focal points called foci. Comparison of the distance between the foci and the major axis will produce eccentricity [28], [30]. The length of the major axis is the scalar that determines the length in pixels of the major axis of the ellipse, having the same normalized second centre momentum as the region [29]. The minor axis length is a scalar that defines the length in pixels of an ellipse's minor axis having the same normalized second centre momentum as the region. The axis ratio is the ratio between the length of the major axis and the length of the minor axis [30]. Tortuosity is defined as the ratio of the length of the major axis to the perimeter. Compactness is a measure of conciseness, not conciseness in terms of point-collection topology, which has no dimensions and is minimized by a disk.

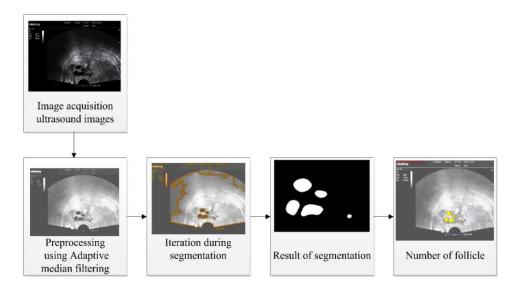


Fig. 4. Image of the automatic follicle detection

$$= 4\pi \left(\frac{Area}{perimeter^2}\right)$$
(2)

$$Eccentricity = \frac{Distance \ between \ ellipse \ Foci}{Length \ of \ Major \ axis}$$
(3)

$$Tortuosity = \frac{major \ axis}{perimeter} \tag{4}$$

D. Feature Selection

Feature selection is a method to reduce the features that will be used for classification, hoping that the results will increase accuracy, reduce computation time, and eliminate features that are less relevant [31]. The feature selection method is effective if it can produce as few features as possible but can produce high accuracy. In this study, Principal Component Analysis (PCA) is implemented to reduce the feature. Then the accuracy results are compared with the accuracy of the classification results without PCA. PCA provide as much information as possible in the data using the least-squares approach. PCA reduces the dimensions of the data by retaining as much information as possible from the original dataset. The stages of image processing using PCA are calculating the average value of the image, representing it in the form of mean corrected data, calculating covariance matrices, finding eigenvalues and

PCA projects the data along a direction where the data has high variance. The direction is determined by the eigenvectors of the covariance matrix, which have the largest eigenvalues. The value of the eigenvalues is the variance value of the data along the direction of the eigenvector. Steps for feature selection using PCA [32] :

eigenvectors, and performing reductions.

1. Find the mean (average value) of the data

Suppose $x_1, x_2, ..., x_M$ are contained in the vector N x 1

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_M}{M} = \frac{\sum_{i=1}^{M} x_i}{M}$$
(5)

2. Calculating Zero Mean for each value in the sample data minus the average value of each associated feature.

$$\Phi_i = x_i - \bar{x} \tag{6}$$
nstruct a Covariance matrix by multiplying the Zerc

3. Construct a Covariance matrix by multiplying the Zero Mean matrix with the transposition of the Sample Population

$$C = \frac{1}{M} \sum_{i=1}^{M} \phi_i^T \phi_i \tag{7}$$

$$C = \frac{1}{M-1} \sum_{i=1}^{M-1} \Phi_i^T \Phi_i$$
(8)

4. Calculate the eigenvalue of C. Result $\lambda_1 \lambda_2 \lambda_3 \dots \dots \lambda_N$

$$CU = \lambda U$$

$$ICU = I\lambda U$$

$$CU = \Lambda iu$$

$$(\lambda I - C)U = 0$$

$$det(\lambda I - C) = 0$$
(9)

5. Calculating the eigenvector matrix, from the eigenvalue calculated in step 4, is substituted into the formula:

$$(\lambda I - C)U = 0 \tag{10}$$

Finish by finding a value U

Result $u_{1,}u_{2,}u_{3,}\dots\dots u_{N}$

E. Classification Method

The classification uses the Support Vector Machine (SVM), looking for the best hyperplane as a separator of the two classes in the input space. The best separator hyperplane between the two classes can be found by measuring the hyperplane's margin and finding its maximum point. Margin

is the distance between the hyperplane and the closest pattern from each class [33]. SVM can classify data that are linearly separable and nonlinear separable. Some of the kernel commonly used in the SVM method is Linear, Polynomial, Radial basis function (RBF) and Sigmoid using kernel parameters. SVM kernels that are often used, namely linear, polynomial and radial basis functions, the radial basis function kernel is the best accuracy level [33], [34]. (11)

1. Linier :
$$K(x_i, x_j) = x_i^T x_j$$

2. Polynomial:
$$K(x_i, x_j) = (\gamma x_i^T x_j + r)^{\alpha}, \gamma > 0$$
 (12)

3. Radial basis function (RBF): $K(x_{i}, x_{i}) = \exp(-\nu ||x_{i} - x_{i}||^{2}), \nu > 0$

$$K(x_i, x_j) = \exp\left(-\gamma \|x_i - x_j\|\right), \gamma > 0$$
(13)
4. Sigmoid: $K(x_i, x_j) = \tanh(\gamma \cdot x_i^T + r)$
(14)

IV. RESULT AND DISCUSSION

In the proposed method, there are 4 stages to extract each follicle. First is image acquisition, pre-processing using adaptive median filtering, segmentation using active contour without edge and watershed, and feature extraction for each follicle. Fig. 4 shown the image of automatic follicle detection.

PCA is an analysis technique for transforming original attributes correlated with one another into a new and uncorrelated set of attributes. Each follicle that has been segmented produces feature values $(X_1, X_2, X_3 \dots X_8)$, representing data according to the selected dataset.

TABLE 1. FEATURE EXTRACTION DATA

(10)

No.	X1	X2	X3	X4	X5	X6	X 7	X8
1	456	98.6274	35.2099	17.3692	0.8698	0.6096	0.5890	0.3570
2	568	96.9705	28.1372	26.0341	0.3793	0.6802	0.7590	0.2901
3	488	97.5563	31.3651	20.7250	0.7505	0.6931	0.6443	0.3215
4	388	84.9705	27.4279	18.6401	0.7335	0.6461	0.6753	0.3227
5	300	70.7279	21.3370	18.4725	0.5005	0.6575	0.7536	0.3016
6	460	90.6274	28.4949	21.0829	0.6727	0.6969	0.7037	0.3144
7	436	100.3848	39.0420	15.1509	0.9216	0.6728	0.5437	0.3889
8	526	94.3259	36.3597	18.9801	0.8529	0.5903	0.7429	0.3854
9	507	101.7401	37.4562	19.6206	0.8518	0.5451	0.6155	0.3681
10	256	64.6274	21.8529	15.5748	0.7014	0.6485	0.7702	0.3381
11	528	97.8406	32.7006	21.3394	0.7577	0.6173	0.6931	0.3342
:	:	:	:	:	:	:	:	:
281	594	97.5978	29.7733	26.2157	0.4740	0.7394	0.7831	0.3050

TABLE 2. MEAN AND STANDARD DEVIATION FOR DATASET FEATURE EXTRACTION

	X1	X2	X3	X4	X6	X 7	X8	X9
Mean	1129.238	138.381	42.048	27.114	0.728	0.620	0.619	0.323
standard deviation	1711.342	99.443	25.669	17.258	0.137	0.081	0.171	0.047

TABLE 3. STANDARDIZE THE DATASET FOR EACH FEATURE

No.	X ₁	X2	X3	X4	X5	X ₆	X ₇	X ₈
1	0.209053	0.961195	0.884244	0.270295	1.046244	-0.47787	-1.62331	-0.99525
2	0.178668	0.750735	0.408011	0.818325	-0.79058	-1.22656	-1.2975	-1.64064
3	1.188986	1.540399	1.655936	1.319061	0.581021	-0.19106	-0.88511	-0.71102
4	-0.0241	0.837073	0.094223	0.59389	-1.35352	-0.56727	-1.993	-2.62156
5	-0.08487	0.311477	0.13551	0.279566	-0.11025	-0.63059	-1.09803	-1.16408
6	0.516414	0.54104	0.584426	1.058921	-0.88902	0.755033	0.384214	-0.56569
7	0.156463	0.374253	0.264723	0.706892	-0.97944	0.490572	-0.29198	-0.96533
8	-0.15499	0.196696	0.131922	0.010148	0.523415	-0.64301	-1.07405	-0.76231
9	0.457981	0.627378	0.60087	0.988542	-0.64256	-0.04456	-0.13346	-0.79222
10	6.708632	3.81852	4.717183	4.164034	0.489872	0.388761	-0.16856	-0.18102
11	-0.30692	-0.30753	-0.25219	-0.23484	0.245594	0.669362	0.200542	0.143815
:	:	:	:	:	:	:	:	:
281	-0.31276	-0.41011	-0.47821	-0.05206	-1.8501	1.480126	0.960969	-0.39045

Table 1 is the features set from each follicle. There is 281 image of follicles. Each follicle has 8 features, including area, perimeter, major axis, minor axis, eccentricity, extent, circularity, and tortuosity. The dataset has a striking difference in scale between features. This scale difference can cause asymmetry of data distribution, so it is necessary to standardize the dataset. Standardization of the dataset is carried out after obtaining the whole data's mean and standard deviation value. Table 2 displays the results of the mean and standard deviation for each feature. Table 3 shows the results of the data standardization process that will be used to calculate the covariance matrix.

The next stage is calculate the covariance matrix for the whole dataset. Covariance is implemented to measure the size of the relationship between two dimensions. If the covariance is calculated from one dimension with the dimension itself, the result is the variance. In a similar way, we calculate the other covariances, and the result is in Table 4. The next step is to calculate the eigenvalue and eigenvector of the covariance matrix. The eigenvalues and eigenvectors contain useful information from a dataset. They are also used to determine the principal component (PC) involved. Table 5 shows the results of the eigenvector values.

The feature vector Table 6 shows the eigenvalues, variability and cumulative values for PC1, PC2, PC3, PC4, PC5, PC6, PC7 and PC8. PC1 represent 55.34% of the total data, PC2 represent 80.44% of the total data, PC4 represent 97.91% of the total data, and PC8 represent 100% of the total data. Support Vector Machine algorithm using the Radial Basis Function (RBF) kernel is implemented as a classifier. First, the dataset is divided into training data and testing data. It was carried out using k-fold 10 on the whole dataset.

SVM was used as a classifier for big follicle and small follicle. Evaluation of model performance is applied using several statistical parameters, namely accuracy, sensitivity, and specificity. Accuracy is a measure to see the level of success of the classification carried out. Sensitivity is the classifier's ability to predict a positive class as positive (true positive), while specificity is the classifier's ability to recognize a negative class as negative (true negative).

	X 1	X2	X3	X4	X6	X 7	X8
X_1	1	0.9087	0.9159	0.9081	-0.0283	0.0078	-0.3030
X2	0.9087	1	0.9694	0.9441	0.0112	-0.1477	-0.5680
X3	0.9159	0.9694	1	0.9189	0.1292	-0.1541	-0.5166
X_4	0.9081	0.9441	0.9189	1	-0.2080	0.0193	-0.3808
X5	-0.0283	0.0112	0.1292	-0.2080	1	-0.4907	-0.3284
X ₆	0.0078	-0.1477	-0.1541	0.0193	-0.4907	1	0.6559
X_7	-0.3030	-0.5680	-0.5166	-0.3808	-0.3284	0.6559	1
X_8	-0.3905	-0.5820	-0.4270	-0.6111	0.5521	-0.0518	0.4744

TABLE 4. COVARIANCE MATRIX FOR THE WHOLE DATASET

TABLE 5. EIGENVECTOR

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
PC1	-0.4264	-0.0809	-0.3422	-0.2025	-0.6409	-0.4647	-0.1102	-0.1210
PC2	-0.4700	0.0086	-0.0914	0.0469	0.1438	-0.0101	0.3456	0.7926
PC3	-0.4534	0.0590	-0.2425	0.0252	0.2307	0.2778	0.5282	-0.5676
PC4	-0.4521	-0.1557	-0.1114	-0.1499	0.3382	0.2987	-0.7299	-0.0097
PC5	0.0219	0.6113	-0.3861	0.4775	0.2689	-0.3642	-0.2072	-0.0296
PC6	0.0850	-0.5928	-0.3095	0.7032	-0.1546	0.1609	-0.0294	0.0224
PC7	0.2910	-0.4109	-0.4459	-0.3755	0.4840	-0.3993	0.1134	0.0054
PC8	0.3080	0.2678	-0.5997	-0.2650	-0.2656	0.5473	-0.0035	0.1829

TABLE 6. PRINCIPAL COMPONENT RESULTS ON VARIANCE DATASET FOR FOLLICLE FEATURE EXTRACTION

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
Eigenvalue	4.427	2.007	1.083	1.034	0.068	0.063	0.023	0.012
Variability (%)	55.34	25.10	13.55	3.93	0.85	0.79	0.29	0.16
Cumulative (%)	55.34	80.44	93.98	97.91	98.76	99.55	99.84	100

TABLE 7. EVALUATION OF MODEL PERFORMANCE USING SVM

	Non- PCA	PC1	PC2	PC3	PC4	PC5
Accuracy	89.68%	90.04%	90.04%	90.04%	90.39%	89.68%
Specificity	89.30%	89.78%	89.78%	89.78%	90.27%	89.30%
Sensitivity	90.43%	90.53%	90.53%	90.53%	90.63%	90.43%

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$
(15)

Specifity =
$$\frac{TN}{TN + FP}$$
 (16)
TP (17)

Sensitivity =
$$\frac{11}{\text{TP} + \text{FN}}$$
 (17)

The evaluation results of the various features used can be seen in Table 7. When using 5 PC, the accuracy is the same as when without using PCA. In this study, the best accuracy was obtained when using 4 PC.

The previous research method [20] used region growing segmentation, resulting in follicle recognition, and the accuracy is 89.4% from 31 ultrasound images of ovaries . Other methods that use active contour for follicle segmentation directly from 15 ultrasound images of ovaries have 81.03% in accuracy and 87.23% in precision [22]. In [25], the region growing method is implemented for follicle identification with a recognition rate is 84.04% and a misidentification rate is 5.9%. In [26], the edge-based method using a canny operator is implemented for follicle identification from 12 ultrasound images of ovaries, and the average recognition rate is 87.5%. 15 ultrasound images of ovaries have 81.03% in accuracy and 87.23% in precision [22]. In [25], the region growing method is implemented for follicle identification with a recognition rate is 84.04% and a misidentification rate is 5.9%. In [26], the edge-based method using a canny operator is implemented for follicle identification from 12 ultrasound images of ovaries, and the average recognition rate is 87.5%. The accuracy of the proposed method is 90.39%. Meanwhile, the sensitivity is 90.27%, and the specificity is 90.43%.

V. CONCLUSION

The proposed method aims to identify ovarian morphology using ultrasound images. Ovarian morphology shows the number of follicles in the ovaries. In this research, PCA is used to improve accuracy when classification. The most relevant features are 4 features. The results of SVM classification using the PCA feature have an accuracy of 90.39%, 90.27 % sensitivity, and 90.43 % specificity. The results obtained were able to show that the proposed methods were able to identify ovarian morphology. The method proposed in this study can be considered one part of developing a computer-aided design to determine the condition of ovarian follicles. In future work, it is suggested

to propose other classification technique for follicle detection.

ACKNOWLEDGMENT

This research was supported by Rekognisi Tugas Akhir (RTA) program from the Research Directorate of Universitas Gadjah Mada through contract number 3190/UN1/DITLIT/DIT-LIT/PT/2021.

REFERENCES

- E. A. Ford, E. L. Beckett, S. D. Roman, E. A. McLaughlin, dan J. M. Sutherland, "Advances in human primordial follicle activation and premature ovarian insufficiency," *Reproduction*, vol. 159, no. 1, hal. R15–R29, Jan 2020.
- [2] N. E. H. Mimouni, I. Paiva, A.-L. Barbotin, F. E. Timzoura, D. Plassard, S. Le Gras, G. Ternier, P. Pigny, S. Catteau-Jonard, V. Simon, V. Prevot, A.-L. Boutillier, dan P. Giacobini, "Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process," *Cell Metab.*, vol. 33, no. 3, hal. 513–530.e8, Mar 2021.
- [3] T. T. Lee dan M. E. Rausch, "Polycystic Ovarian Syndrome: Role of Imaging in Diagnosis," *RadioGraphics*, vol. 32, no. 6, hal. 1643–1657, Okt 2012.
- [4] D. Chizen and R. Pierson, "Transvaginal ultrasonography and female infertility," *Glob. Libr. women's Med.*, 2010.
- [5] Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group, "Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome," *Fertil. Steril.*, vol. 81, no. 1, hal. 19–25, Jan 2004.
- [6] I. Kyrou, M. O. Weickert, dan H. S. Randeva, "Diagnosis and Management of Polycystic Ovary Syndrome (PCOS)," in *Endocrinology and Diabetes*, London: Springer London, 2015, hal. 99–113.
- [7] M. L. and I. P. N. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, "Recommendations from the international evidence-based guideline for the assessment and management of polycystic ovary syndrome[†]," *Hum. Reprod.*, vol. 33, no. 9, hal. 1602–1618, Sep 2018.
- [8] S. G. Kristensen, A. Kumar, B. Kalra, S. E. Pors, J. A. Bøtkjær, L. S. Mamsen, L. B. Colmorn, J. Fedder, E. Ernst, L. A. Owens, K. Hardy, S. Franks, dan C. Y. Andersen, "Quantitative Differences in TGF-β Family Members Measured in Small Antral Follicle Fluids From Women With or Without PCO," *J. Clin. Endocrinol. Metab.*, vol. 104, no. 12, hal. 6371–6384, Des 2019.
- [9] S. Agrawal, "Polycystic Ovary Syndrome," in *Endocrine Conditions in Pediatrics*, Cham: Springer International Publishing, 2021, hal. 267–270.
- [10] A. M. Fulghesu, E. Canu, L. Casula, F. Melis, dan A. Gambineri, "Polycystic Ovarian Morphology in Normocyclic Non-Hyperandrogenic Adolescents," J. Pediatr. Adolesc. Gynecol., Feb 2021.
- [11] G. S. Conway, J. W. Honour, dan H. S. Jacobs, "Heterogeneity Of The Polycystic Ovary Syndrome: Clinical, Endocrine And Ultrasound Features In 556 Patients," *Clin. Endocrinol. (Oxf).*, vol. 30, no. 4, hal. 459–470, Apr 1989.
- [12] S. R. Goldstein, "Incorporating endovaginal ultrasonography into the overall gynecologic examination," *Am. J. Obstet. Gynecol.*, vol. 162, no. 3, hal. 625–632, Mar 1990.

- [13] A. H. Balen, J. S. E. Laven, S. Tan, dan D. Dewailly, "Ultrasound assessment of the polycystic ovary: international consensus de nitions," vol. 9, no. 6, hal. 505–514, 2003.
- [14] T. Bourne, L. Hamberger, M. Hahlin, dan S. Granberg, "Ultrasound in gynecology: endometrium.," *Int. J. Gynaecol. Obstet.*, vol. 56, no. 2, hal. 115–127, 1997.
- [15] A. La Marca dan S. K. Sunkara, "Individualization of controlled ovarian stimulation in IVF using ovarian reserve markers: from theory to practice," *Hum. Reprod. Update*, vol. 20, no. 1, hal. 124–140, Jan 2014.
- [16] W. P. Martins and L. Jokubkiene, "Assessment of the functional ovarian reserve in Managing Ultrasonography in Human Reproduction: A Practical Handbook," *Springer, pp. 3-12, 2017*, no. Cham, Switzerland.
- [17] Hiremath P. S. and Tegnoor J. R., "Automatic Detection of Follicles in Ultrasound Images of Ovaries by Optimal Threshoding Method," *Int. J. Comput. Sci. Inf. Technol.*, vol. 3(2) 217-2, 2010.
- [18] Eliyani, S. Hartati, dan A. Musdholifah, "Machine Learning Assisted Medical Diagnosis for Segmentation of Follicle in Ovary Ultrasound," 2019, hal. 71–80.
- [19] Eliyani, S. Hartati, A. Musdholifah, dan D. Dasuki, "Active Contour Without Edge and Watershed for Follicle Detection in Ultrasound Image of Ovary," in 2020 International Conference on Advanced Computer Science and Information Systems (ICACSIS), 2020, hal. 295–300.
- [20] Y. Deng, Y. Wang, dan Y. Shen, "An automated diagnostic system of polycystic ovary syndrome based on object growing," *Artif. Intell. Med.*, vol. 51, no. 3, hal. 199–209, 2011.
- [21] B. Potočnik dan D. Zazula, "Automated ovarian follicle segmentation using region growing," *Int. Symp. Image Signal Process. Anal. ISPA*, vol. 2000–Janua, no. February, hal. 157–162, 2000.
- [22] A. Mandal, M. Sarkar, dan D. Saha, "Follicle Segmentation from Ovarian USG Image Using Horizontal Window Filtering and Filled Convex Hull Technique," 2021, hal. 555–563.
- [23] V. Kiruthika dan M. M. Ramya, "Automatic Segmentation of Ovarian Follicle Using K-Means Clustering," 2014 Fifth Int. Conf. Signal Image Process., hal. 137–141, 2014.
- [24] U. M. Khaire dan R. Dhanalakshmi, "Stability of feature selection algorithm: A review," J. King Saud Univ. - Comput. Inf. Sci., Jun 2019.
- [25] R. Sitheswaran dan S. Malarkhodi, "An effective automated system in follicle identification for Polycystic Ovary Syndrome using ultrasound images," 2014 Int. Conf. Electron. Commun. Syst. ICECS 2014, 2014.
- [26] B. Padmapriya dan T. Kesavamurthy, "Detection of follicles in poly cystic ovarian syndrome in ultrasound images using morphological operations," *J. Med. Imaging Heal. Informatics*, vol. 6, no. 1, hal. 240– 243, 2016.
- [27] D. H. Ballard dan C. M. Brown, *Computer Vision*. New Jersey (US): Prentice Hall., 1982.
- [28] B. Wenger, S. Mandayam, P. J. Violante, dan K. J. Drake, "Detection of anomalous events in shipboard video using moving object segmentation and tracking," *AUTOTESTCON (Proceedings)*, hal. 261– 266, 2010.
- [29] R. C. . Gonzalez dan R. E. Woods, "Digital image processing," *Nueva Jersey*. hal. 976, 2008.
- [30] Z. Chen dan T. Ellis, "Multi-shape descriptor vehicle classification for urban traffic," Proc. - 2011 Int. Conf. Digit. Image Comput. Tech. Appl. DICTA 2011, hal. 456–461, 2011.
- [31] T.-K. Lin, "PCA/SVM-Based Method for Pattern Detection in a Multisensor System," *Math. Probl. Eng.*, vol. 2018, hal. 1–11, 2018.
- [32] S. Wold, K. Esbensen, dan P. Geladi, "Principal component analysis," *Chemom. Intell. Lab. Syst.*, vol. 2, no. 1–3, hal. 37–52, Agu 1987.
- [33] C. Cortes dan V. Vapnik, "Supprot-Vector Networks," *Mach. Learn.*, vol. 297, no. 20, hal. 273–297, 1995.
- [34] E. A. Borovikov, "An Evaluation of Support Vector Machines as a Pattern Recognition Tool," *Learning*, 1999.
- [35] Vapnik V., Statistical Learning Theory. John Wiley, 1998.

CERTIFICATE OF PARTICIPATION

at the 7th International Conference on Informatics and Computing (ICIC 2022) held between 08-09 December 2022 at Bali

APTIKOM

This is to certify that

Sri Hartati, Aina Musdholifah, Putu Desiana Wulaning Ayu

has written the Paper titled

Follicle Detection Model on Ovarian Ultrasound Image

